Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1274506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510966

RESUMO

Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.


Assuntos
Parasitos , Proteínas de Saccharomyces cerevisiae , Trypanosoma , Animais , Parasitos/metabolismo , Saccharomyces cerevisiae/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Microcorpos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448164

RESUMO

The microtubule motor dynein plays a key role in cellular organization. However, little is known about how dynein's biosynthesis, assembly, and functional diversity are orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a genome-wide gRNA library, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints revealed co-functional proteins involved in many cellular processes, including several candidate novel regulators of core dynein functions. Further analysis of one of these factors, the RNA-binding protein SUGP1, indicates that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our data represent a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organization captured by our high-content imaging.


Assuntos
Dineínas , Microtúbulos , Humanos , Dineínas/genética , Microtúbulos/genética , Peroxissomos/genética , Sistemas CRISPR-Cas , Técnicas Genéticas
3.
Biol Direct ; 19(1): 14, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365851

RESUMO

Peroxisomes are primarily studied in the brain, kidney, and liver due to the conspicuous tissue-specific pathology of peroxisomal biogenesis disorders. In contrast, little is known about the role of peroxisomes in other tissues such as the heart. In this meta-analysis, we explore mitochondrial and peroxisomal gene expression on RNA and protein levels in the brain, heart, kidney, and liver, focusing on lipid metabolism. Further, we evaluate a potential developmental and heart region-dependent specificity of our gene set. We find marginal expression of the enzymes for peroxisomal fatty acid oxidation in cardiac tissue in comparison to the liver or cardiac mitochondrial ß-oxidation. However, the expression of peroxisome biogenesis proteins in the heart is similar to other tissues despite low levels of peroxisomal fatty acid oxidation. Strikingly, peroxisomal targeting signal type 2-containing factors and plasmalogen biosynthesis appear to play a fundamental role in explaining the essential protective and supporting functions of cardiac peroxisomes.


Assuntos
Transtornos Peroxissômicos , Peroxissomos , Humanos , Peroxissomos/genética , Peroxissomos/metabolismo , Ácidos Graxos/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Mitocôndrias/metabolismo , Oxirredução
4.
PeerJ ; 12: e16874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406287

RESUMO

Low-grade glioma (LGG), a common primary tumor, mainly originates from astrocytes and oligodendrocytes. Increasing evidence has shown that peroxisomes function in the regulation of tumorigenesis and development of cancer. However, the prognostic value of peroxisome-related genes (PRGs) in LGG has not been reported. Therefore, it is necessary to construct a prognostic risk model for LGG patients based on the expression profiles of peroxisome-related genes. Our study mainly concentrated on developing a peroxisome-related gene signature for overall survival (OS) prediction in LGG patients. First, according to these peroxisome-related genes, all LGG patients from The Cancer Genome Atlas (TCGA) database could be divided into two subtypes. Univariate Cox regression analysis was used to find prognostic peroxisome-related genes in TCGA_LGG dataset, and least absolute shrinkage and selection operator Cox regression analysis was employed to establish a 14-gene signature. The risk score based on the signature was positively associated with unfavorable prognosis. Then, multivariate Cox regression incorporating additional clinical characteristics showed that the 14-gene signature was an independent predictor of LGG. Time-dependent ROC curves revealed good performance of this prognostic signature in LGG patients. The performance about predicting OS of LGG was validated using the GSE107850 dataset derived from the Gene Expression Omnibus (GEO) database. Furethermore, we constructed a nomogram model based on the gene signature and age, which showed a better prognostic power. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed that neuroactive ligand-receptor interaction and phagosome were enriched and that the immune status was decreased in the high-risk group. Finally, cell counting kit-8 (CCK8) were used to detect cell proliferation of U251 and A172 cells. Inhibition of ATAD1 (ATPase family AAA domain-containing 1) and ACBD5 (Acyl-CoA binding-domain-containing-5) expression led to significant inhibition of U251 and A172 cell proliferation. Flow cytometry detection showed that ATAD1 and ACBD5 could induce apoptosis of U251 and A172 cells. Therefore, through bioinformatics methods and cell experiments, our study developed a new peroxisome-related gene signature that migh t help improve personalized OS prediction in LGG patients.


Assuntos
Glioma , Peroxissomos , Humanos , Peroxissomos/genética , Glioma/genética , Domínio AAA , Adenosina Trifosfatases , Apoptose , Microambiente Tumoral/genética
5.
Cell Rep ; 42(10): 113200, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796662

RESUMO

The enhanced response of glucagon and its Drosophila homolog, adipokinetic hormone (Akh), leads to high-caloric-diet-induced hyperglycemia across species. While previous studies have characterized regulatory components transducing linear Akh signaling promoting carbohydrate production, the spatial elucidation of Akh action at the organelle level still remains largely unclear. In this study, we find that Akh phosphorylates extracellular signal-regulated kinase (ERK) and translocates it to peroxisome via calcium/calmodulin-dependent protein kinase II (CaMKII) cascade to increase carbohydrate production in the fat body, leading to hyperglycemia. The mechanisms include that ERK mediates fat body peroxisomal conversion of amino acids into carbohydrates for gluconeogenesis in response to Akh. Importantly, Akh receptor (AkhR) or ERK deficiency, importin-associated ERK retention from peroxisome, or peroxisome inactivation in the fat body sufficiently alleviates high-sugar-diet-induced hyperglycemia. We also observe mammalian glucagon-induced hepatic ERK peroxisomal translocation in diabetic subjects. Therefore, our results conclude that the Akh/glucagon-peroxisomal-ERK axis is a key spatial regulator of glycemic control.


Assuntos
Proteínas de Drosophila , Drosophila , MAP Quinases Reguladas por Sinal Extracelular , Glucagon , Hiperglicemia , Animais , Carboidratos , Drosophila/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucagon/metabolismo , Controle Glicêmico , Peroxissomos/genética , Peroxissomos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
6.
Mol Genet Genomics ; 298(6): 1247-1260, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37555868

RESUMO

ß-oxidation of fatty acids is an important metabolic pathway and is a shared function between mitochondria and peroxisomes in mammalian cells. On the other hand, peroxisomes are the sole site for the degradation of fatty acids in yeast. The first reaction of this pathway is catalyzed by the enzyme acyl CoA oxidase housed in the matrix of peroxisomes. Studies in various model organisms have reported the conserved function of the protein in fatty acid oxidation. The importance of this enzyme is highlighted by the lethal conditions caused in humans due to its altered function. In this review, we discuss various aspects ranging from gene expression, structure, folding, and import of the protein in both yeast and human cells. Further, we highlight recent findings on the role of the protein in human health and aging, and discuss the identified mutations in the protein associated with debilitating conditions in patients.


Assuntos
Peroxissomos , Saccharomyces cerevisiae , Animais , Humanos , Acil-CoA Oxidase/metabolismo , Saccharomyces cerevisiae/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Oxirredução , Ácidos Graxos/metabolismo , Mamíferos
7.
Genet Med ; 25(11): 100944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493040

RESUMO

PURPOSE: Zellweger spectrum disorders (ZSDs) are known as autosomal recessive disorders caused by defective peroxisome biogenesis due to bi-allelic pathogenic variants in any of at least 13 different PEX genes. Here, we report 2 unrelated patients who present with an autosomal dominant ZSD. METHODS: We performed biochemical and genetic studies in blood and skin fibroblasts of the patients and demonstrated the pathogenicity of the identified PEX14 variants by functional cell studies. RESULTS: We identified 2 different single heterozygous de novo variants in the PEX14 genes of 2 patients diagnosed with ZSD. Both variants cause messenger RNA mis-splicing, leading to stable expression of similar C-terminally truncated PEX14 proteins. Functional studies indicated that the truncated PEX14 proteins lost their function in peroxisomal matrix protein import and cause increased degradation of peroxisomes, ie, pexophagy, thus exerting a dominant-negative effect on peroxisome functioning. Inhibition of pexophagy by different autophagy inhibitors or genetic knockdown of the peroxisomal autophagy receptor NBR1 resulted in restoration of peroxisomal functions in the patients' fibroblasts. CONCLUSION: Our finding of an autosomal dominant ZSD expands the genetic repertoire of ZSDs. Our study underscores that single heterozygous variants should not be ignored as possible genetic cause of diseases with an established autosomal recessive mode of inheritance.


Assuntos
Síndrome de Zellweger , Humanos , Alelos , Peroxissomos/genética , Peroxissomos/metabolismo , Transporte Proteico/fisiologia , Proteínas/genética , Síndrome de Zellweger/genética
8.
J Agric Food Chem ; 71(32): 12250-12263, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37493643

RESUMO

Sterol regulatory element-binding protein, Sre1, regulates sterol biosynthesis, lipid metabolism, hypoxia adaptation, and virulence in some fungi, even though its roles are varied in fungal species. However, few studies report its other functions in fungi. Here, we report novel roles of Sre1 homolog, BbSre1, in the insect fungal pathogen, Beauveria bassiana, that regulates oxidative stress response, peroxisome division, and redox homeostasis. The gene disruption stain showed increased sensitivity to oxidative stress, which was in line with oxidative stress-induced-BbSre1 nuclear import and control of antioxidant and detoxification-involved genes. The gene mutation also inhibited peroxisome division, affected redox homeostasis, and impaired lipid/fatty acid metabolism and sterol biosynthesis, which was verified by downregulation of their associated genes. These data broaden our understanding of role of Sre1, which regulates peroxisome division, antioxidant, and detoxification-involved genes for control of redox homeostasis and oxidative stress response that links to lipid/fatty acid metabolism and sterol biosynthesis.


Assuntos
Antioxidantes , Proteínas de Ligação a Elemento Regulador de Esterol , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Antioxidantes/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Homeostase , Estresse Oxidativo , Oxirredução , Esteróis/metabolismo , Ácidos Graxos/metabolismo , Lipídeos
9.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119471, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028652

RESUMO

The mechanism behind peroxisomal membrane protein targeting is still poorly understood, with only two yeast proteins believed to be involved and no consensus targeting sequence. Pex19 is thought to bind peroxisomal membrane proteins in the cytosol, and is subsequently recruited by Pex3 at the peroxisomal surface, followed by protein insertion via a mechanism that is as-yet-unknown. However, some peroxisomal membrane proteins still correctly sort in the absence of Pex3 or Pex19, suggesting that multiple sorting pathways exist. Here, we studied sorting of yeast peroxisomal ABC transporter Pxa1. Co-localisation analysis of Pxa1-GFP in a collection of 86 peroxisome-related deletion strains revealed that Pxa1 sorting requires Pex3 and Pex19, while none of the other 84 proteins tested were essential. To identify regions with peroxisomal targeting information in Pxa1, we developed a novel in vivo re-targeting assay, using a reporter consisting of the mitochondrial ABC transporter Mdl1 lacking its N-terminal mitochondrial targeting signal. Using this assay, we showed that the N-terminal 95 residues of Pxa1 are sufficient for retargeting this reporter to peroxisomes. Interestingly, truncated Pxa1 lacking residues 1-95 still localised to peroxisomes. This was confirmed via localisation of various Pxa1 truncation and deletion constructs. However, localisation of Pxa1 lacking residues 1-95 depended on the presence of its interaction partner Pxa2, indicating that this truncated protein does not contain a true targeting signal.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Saccharomyces cerevisiae , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Peroxissomos/genética , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Peroxinas/genética , Peroxinas/metabolismo
10.
Methods Mol Biol ; 2643: 217-232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952189

RESUMO

PCR-based gene targeting enables rapid alteration of the Saccharomyces cerevisiae genome. Here we describe how this method can be applied for directed gene deletions, epitope and fluorescence protein tagging, and conditional gene expression, with a specific focus on peroxisomal proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Reação em Cadeia da Polimerase/métodos , Marcação de Genes
11.
Methods Mol Biol ; 2643: 233-245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952190

RESUMO

The development and application of the CRISPR-Cas9 technology for genome editing of mammalian cells have opened up a wealth of possibilities for genetically modifying and manipulating human cells, and use in functional studies or therapeutic approaches.Here we describe the approach that we have been using successfully to generate multiple human cell lines with targeted (partial) gene deletions, i.e., knockout cells, or human cells with modified genomic nucleotide sequences, i.e., knock-in cells, in genes encoding known or putative proteins involved in peroxisome biogenesis or peroxisomal functions.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Sistemas CRISPR-Cas/genética , Peroxissomos/genética , Genoma , Sequência de Bases , Mamíferos/genética
12.
Methods Mol Biol ; 2643: 247-270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952191

RESUMO

Peroxisomes are multifunctional, ubiquitous, and dynamic organelles. They are responsible for diverse metabolic and physiological functions and communicate with other organelles, including the ER, mitochondria, lipid droplets, and lysosomes, through membrane contact sites. However, despite their importance for healthy cell function, remarkably, little is known about how peroxisomes and peroxisomal proteins are regulated under physiological conditions in human cells. Here, we present a method to generate reporter cell lines to measure endogenous expression of peroxisomal proteins of interest. By CRISPR-mediated knock-in of an easily detectable protein-coding tag in-frame into the relevant genomic loci, endogenous levels of the protein of interest in a cell population can be quantified in a high-throughput manner under different conditions. This has important implications for the fundamental understanding of how peroxisomal proteins are regulated and may reveal the therapeutic potential of modulating peroxisomal protein expression to improve cell performance.


Assuntos
Proteínas de Membrana , Mitocôndrias , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Linhagem Celular , Peroxissomos/genética , Peroxissomos/metabolismo
13.
Biol Chem ; 404(2-3): 209-219, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36534601

RESUMO

For the biogenesis and maintenance of peroxisomes several proteins, called peroxins, are essential. Malfunctions of these proteins lead to severe diseases summarized as peroxisome biogenesis disorders. The different genetic background of patient-derived cell lines and the residual expression of mutated PEX genes impede analysis of the whole spectrum of cellular functions of affected peroxins. To overcome these difficulties, we have generated a selected PEX knockout resource of HEK T-REx293 cells using the CRISPR/Cas9 technique. Comparative analyses of whole cell lysates revealed PEX-KO specific alterations in the steady-state level of peroxins and variations in the import efficacy of matrix proteins with a Type 2 peroxisomal targeting signal. One of the observed differences concerned PEX1 as in the complete absence of the protein, the number of peroxisomal ghosts is significantly increased. Upon expression of PEX1, import competence and abundance of peroxisomes was adjusted to the level of normal HEK cells. In contrast, expression of an alternatively spliced PEX1 isoform lacking 321 amino acids of the N-terminal region failed to rescue the peroxisomal import defects but reduced the number of peroxisomal vesicles. All in all, the data suggest a novel 'moonlighting' function of human PEX1 in the regulation of pre-peroxisomal vesicles.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Biogênese de Organelas , Peroxissomos , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Linhagem Celular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxinas/análise , Peroxinas/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Isoformas de Proteínas/metabolismo
14.
Microbiol Res ; 266: 127236, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334316

RESUMO

Peroxisomes are microbodies involved in the metabolism of fatty acids and hydrogen peroxide (H2O2) in eukaryotes. In the current study, an AaPex3 gene encoding a peroxisome membrane protein was demonstrated to be required for peroxisome biogenesis and resistance to peroxides and superoxide-generating compounds. Deleting AaPex3 affected the expression of the genes encoding the NADPH oxidase (NoxA) and the Yap1 stress-responsive transcription regulator, both of which have been implicated in ROS resistance. The AaPex3-mediated peroxisome biogenesis negatively affected resistance to singlet oxygen-generating compounds, 2-chloro-5-hydroxypyridine (CHP), and 2,3,5-triiodobenzoic acid (TIBA), novel phenotypes associated with peroxisomes. Nile red staining revealed that ΔAaPex3 accumulated more lipid bodies than the wild type. ΔAaPex3 conidia had thinner cell walls than the wild type, suggesting the involvement of AaPex3 in maintaining cell wall integrity. Genetic evidence has also demonstrated that the AaPex3-mediated peroxisome biogenesis is required for conidiogenesis, conidia germination, siderophore biosynthesis, toxin production, and virulence. Biotin or lipids could restore ΔAaPex3 growth in axenic culture and on the surface of citrus leaves. In contrast, co-application of ΔAaPex3 with biotin and oleic acid on citrus leaves failed to induce necrotic lesions. Our results revealed the multifaceted functions of peroxisomes in the phytopathogenic fungus.


Assuntos
Citrus , Peroxissomos , Virulência/genética , Peroxissomos/genética , Peroxissomos/metabolismo , Peróxido de Hidrogênio/metabolismo , Biotina , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Alternaria , Citrus/microbiologia
15.
Curr Genet ; 68(5-6): 537-550, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242632

RESUMO

Peroxisomes are highly dynamic organelles present in most eukaryotic cells. They also play an important role in human health and the optimum functioning of cells. An extensive repertoire of proteins is associated with the biogenesis and function of these organelles. Two protein families that are involved in regulating peroxisome number in a cell directly or indirectly are Pex11 and Pex30. Interestingly, these proteins are also reported to regulate the contact sites between peroxisomes and other cell organelles such as mitochondria, endoplasmic reticulum and lipid droplets. In this manuscript, we review our current knowledge of the role of these proteins in peroxisome biogenesis in various yeast species. Further, we also discuss in detail the role of these protein families in the regulation of inter-organelle contacts in yeast.


Assuntos
Peroxissomos , Proteínas de Saccharomyces cerevisiae , Humanos , Peroxissomos/genética , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo
16.
Mol Genet Metab ; 137(1-2): 68-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35932552

RESUMO

Impaired peroxisome assembly caused by mutations in PEX genes results in a human congenital metabolic disease called Zellweger spectrum disorder (ZSD), which impacts the development and physiological function of multiple organs. In this study, we revealed a long-standing problem of heterogeneous peroxisome distribution among cell population, so called "peroxisomal mosaicism", which appears in patients with mild form of ZSD. We mutated PEX3 gene in HEK293 cells and obtained a mutant clone with peroxisomal mosaicism. We found that peroxisomal mosaicism can be reproducibly arise from a single cell, even if the cell has many or no peroxisomes. Using time-lapse imaging and a long-term culture experiment, we revealed that peroxisome biogenesis oscillates over a span of days; this was also confirmed in the patient's fibroblasts. During the oscillation, the metabolic activity of peroxisomes was maintained in the cells with many peroxisomes while depleted in the cells without peroxisomes. Our results indicate that ZSD patients with peroxisomal mosaicism have a cell population whose number and metabolic activities of peroxisomes can be recovered. This finding opens the way to develop novel treatment strategy for ZSD patients with peroxisomal mosaicism, who currently have very limited treatment options.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Humanos , Mosaicismo , Células HEK293 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo , Mutação , Fibroblastos/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Peroxinas/genética , Lipoproteínas/genética
17.
Orphanet J Rare Dis ; 17(1): 286, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854306

RESUMO

BACKGROUND: Pathogenic variants in PEX-genes can affect peroxisome assembly and function and cause Zellweger spectrum disorders (ZSDs), characterized by variable phenotypes in terms of disease severity, age of onset and clinical presentations. So far, defects in at least 15 PEX-genes have been implicated in Mendelian diseases, but in some of the ultra-rare ZSD subtypes genotype-phenotype correlations and disease mechanisms remain elusive. METHODS: We report five families carrying biallelic variants in PEX13. The identified variants were initially evaluated by using a combination of computational approaches. Immunofluorescence and complementation studies on patient-derived fibroblasts were performed in two patients to investigate the cellular impact of the identified mutations. RESULTS: Three out of five families carried a recurrent p.Arg294Trp non-synonymous variant. Individuals affected with PEX13-related ZSD presented heterogeneous clinical features, including hypotonia, developmental regression, hearing/vision impairment, progressive spasticity and brain leukodystrophy. Computational predictions highlighted the involvement of the Arg294 residue in PEX13 homodimerization, and the analysis of blind docking predicted that the p.Arg294Trp variant alters the formation of dimers, impairing the stability of the PEX13/PEX14 translocation module. Studies on muscle tissues and patient-derived fibroblasts revealed biochemical alterations of mitochondrial function and identified mislocalized mitochondria and a reduced number of peroxisomes with abnormal PEX13 concentration. CONCLUSIONS: This study expands the phenotypic and mutational spectrum of PEX13-related ZSDs and also highlight a variety of disease mechanisms contributing to PEX13-related clinical phenotypes, including the emerging contribution of secondary mitochondrial dysfunction to the pathophysiology of ZSDs.


Assuntos
Síndrome de Zellweger , Estudos de Associação Genética , Humanos , Proteínas de Membrana/genética , Mutação/genética , Peroxissomos/genética , Peroxissomos/patologia , Síndrome de Zellweger/genética , Síndrome de Zellweger/patologia
18.
J Basic Microbiol ; 62(8): 930-936, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689329

RESUMO

The YJL218W open reading frame may be involved in peroxisomal biogenesis. However, whether it mediates salt tolerance is unclear. We found that after knockdown of YJL218W in Saccharomyces cerevisiae (S. cerevisiae), its salt tolerance was reduced and cell death was increased. Transcriptome sequencing and analysis further revealed that YJL218W knockdown mediated significant changes in the expression of 1432 messenger RNA (mRNAs), of which 603 were upregulated. KEGG enrichment analysis and polymerase chain reaction (PCR) assay indicated that YJL218W mediated the regulation of peroxisome-related genes. Therefore, YJL218W may regulate salt stress in S. cerevisiae by regulating peroxisome assembly.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tolerância ao Sal/genética
19.
Mol Carcinog ; 61(7): 619-628, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35502931

RESUMO

Peroxisomes play a role in lipid metabolism and regulation of reactive oxygen species, but its role in development and progression of non-small cell lung cancer (NSCLC) is not well understood. Here, we investigated the associations between 9708 single-nucleotide polymorphisms (SNPs) in 113 genes in the peroxisome-related pathways and survival of NSCLC patients from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) and the Harvard Lung Cancer Susceptibility (HLCS) study. In 1185 NSCLC patients from the PLCO trial, we found that 213 SNPs were significantly associated with NSCLC overall survival (OS) (p ≤ 0.05, Bayesian false discovery probability [BFDP] ≤ 0.80), of which eight SNPs were validated in the HLCS data set. In a multivariate Cox proportional hazards regression model, two independent SNPs (rs9384742 DDO and rs9825224 PEX5L) were significantly associated with NSCLC survival (hazards ratios [HR] of 1.17 with 95% CI [confidence interval] of 1.06-1.28 and 0.86 with 95% CI of 0.77-0.96, respectively). Patients with one or two protective genotypes had a significantly higher OS (HR: 0.787 [95% CI: 0.620-0.998] and 0.691 [95% CI: 0.543-0.879], respectively). Further expression quantitative trait loci analysis using whole blood and lung tissue showed that the minor allele of rs9384742 DDO was significantly associated with decreased messenger RNA (mRNA) expression levels and that DDO expression was also decreased in NSCLC tumor tissue. Additionally, high PEX5L expression levels were significantly associated with lower survival of NSCLC. Our data suggest that variants in these peroxisome-related genes may influence gene regulation and are potential predictors of NSCLC OS, once validated by additional studies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Peroxissomos , Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Peroxissomos/genética , Peroxissomos/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
20.
Curr Genet ; 68(2): 207-225, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35220444

RESUMO

Peroxisomes are single membrane-bound organelles ubiquitously present in several cell types and are associated with cell and tissue-specific functions. Their role in cellular ageing is under investigation in various model systems. Metabolism of cellular reactive oxygen species is a universal function performed by these organelles. In this study, we investigated alterations in peroxisome number upon early replicative ageing of yeast cells. Increase in the number of peroxisomes in replicatively aged mother cells of wild-type yeast was observed when cultured in both peroxisome-inducing and non-inducing medium. Further, we investigated if this increase in peroxisome number in replicatively aged cells is due to enhanced peroxisome proliferation. For this, the number of peroxisomes in replicatively aged mother cells of pex11, pex25 and pex11pex25 was analysed. Increased percentage of aged cells was observed in pex25 and pex11pex25 cells cultured in peroxisome-inducing oleic acid medium. Interestingly, when cultured in oleic acid, young mother cells devoid of Pex11 showed reduced peroxisome proliferation compared to old mother cells. Induced activity of the antioxidant enzyme catalase and reduced accumulation of reactive oxygen species were reported in all studied strains when cultured in oleic acid medium. Further, our data also suggest that replicatively aged cells with increased peroxisome number also display mitochondrial dysfunction and fragmentation in all the strains studied. In conclusion, our data suggests a correlation between increase in peroxisome number and replicative age of yeast cells and interestingly this increase seems to be partly dependent on the fission proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proliferação de Células , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...